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Abstract

A major challenge in visual highway traffic analytics is

to disaggregate individual vehicles from clusters formed in

dense traffic conditions. Here we introduce a data driven

3D generative reasoning method to tackle this segmenta-

tion problem. The method is comprised of offline (learning)

and online (inference) stages. In the offline stage, we fit a

mixture model for the prior distribution of vehicle dimen-

sions to labelled data. Given camera intrinsic parameters

and height, we use a parallelism method to estimate high-

way lane structure and camera tilt to project 3D models to

the image. In the online stage, foreground vehicle cluster

segments are extracted using motion and background sub-

traction. For each segment, we use a data-driven MCMC

method to estimate the vehicles configuration and dimen-

sions that provide the most likely account of the observed

foreground pixels. We evaluate the method on two highway

datasets and demonstrate a substantial improvement on the

state of the art.

1. Introduction and Prior Work

In many traffic surveillance installations, camera place-

ment is oblique. As a consequence, vehicles project to the

image in clusters and are often only partially visible due to

occlusion. Disaggregating these clusters into individual ve-

hicles is central to attaining accurate vehicle counts. Track-

ing and appearance cues are highly fallible, as vehicles may

move at similar speeds and have similar colours. Size cues

are also tricky, as vehicle size can vary by an order of mag-

nitude, from motorcycles to tractor-trailers.

Attempts have been made to solve this problem using

2D spatiotemporal constraints. One idea is to use variations

in velocity within a segment or variations in the shape of

an image segment over time to identify the multiple vehi-

cles within a cluster [2, 1, 9]. Unfortunately, since highway

speeds are highly regulated, velocity is not a very effective

segmentation cue for highway traffic: it is very common for

neighbouring vehicles to be travelling at the same speed and

in the same direction. An image segment projecting from a

single vehicle may also vary in shape over time due to shad-

ows, specularities and projective distortations, making this

a weak cue as well. Bouvié et al. [2, 1] attempt to strengthen

this method with the constraint that local image features

projecting from each vehicle form a convex group in the

image. However, this approach is also limited, since an in-

dividual vehicle could project a non-convex group, while a

cluster of vehicles could project a convex group.

To overcome these limitations we propose a 3D ap-

proach. 3D model-based methods for object verifica-

tion (motorcycles, horses) [14] and for make/model vehi-

cle recognition [8, 10] have recently proven effective on

datasets where the objects are fairly isolated and already lo-

calized in the image. However, these papers do not address

the thorny problem of detecting and individuating multi-

ple mutually occluding objects in highly cluttered scenes,

which is the problem we must solve to achieve accurate traf-

fic analytics in rush-hour conditions.

To address this problem, we take as inspiration the ear-

lier work of Song & Nevatia [13]. Their insight was that 3D

models of common vehicles combined with knowledge of

intrinsic and extrinsic camera parameters could be used to

reason about the 3D configuration of vehicles most likely to

account for observed clusters in the image. This is a pow-

erful approach, and has the advantage that vehicle catego-

rization and traffic volume measurement can potentially be

solved simultaneously.

There are two main limitations of this 3D model ap-

proach that we address in this paper. The first is how the

3D models are defined. The Song & Nevatia algorithm em-

ployed three categories of vehicle (sedan, SUV, truck), and

assumed they occur with equal probability. This is clearly

unrealistic for highway traffic, where diverse vehicle cate-

gories are possible. For example, in our datasets we have

enumerated 13 different semantic vehicle categories, and

find that the prior distribution is far from uniform (Fig. 1).

To address this challenge, we propose an automatic cluster-

ing approach, optimizing the number of clusters to maxi-

mize the accuracy of traffic volume measurements.
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Figure 1: Distribution of vehicle classes for our training

dataset.

The second limitation is the complexity of the config-

uration space. In the Song & Nevatia approach, the un-

knowns included the number, category, location and orien-

tation of the vehicles in the scene. The combinatorial com-

plexity of this configuration space led them to propose a

rather complex coarse-to-fine search, terminating in a fine-

grained MCMC stage. To address this problem, we take

advantage of recent methods for automatically recovering

the lane structure of the highway [4]. This allows us to

fix the pose of each 3D vehicle proposal, and to limit the

search over location to a 1D space. As a result, a single

MCMC search stage is sufficient to recover optimal config-

urations. We refer to our method as ‘Slot Cars’ because the

MCMC algorithm slides the 3D models one-dimensionally

along each lane to identify the most probable configuration.

While Song & Nevatia employed complex 3D CAD

models for their vehicles, we elect to employ simpler cuboid

models (Fig. 2) that have been used effectively in recent

work on camera calibration [5], vehicle detection [3] and

fined-grained vehicle recognition [12]. On the other hand,

while Song & Nevatia relied on an orthographic projection

approximation, we assume full perspective projection, as it

adds negligable complexity and should provide more accu-

rate results.

2. Datasets & Geometry

We recorded two highway traffic datasets at differ-

ent highways and on different days. Both datasets were

recorded with a Sony Nexus 6 camera at 1440× 1080 pixel

resolution and 30fps. For Dataset 1 we labeled 1,072 frames

(∼ 36 sec) and for Dataset 2 we labeled 494 frames (∼ 16
sec). We employed the first 566 labelled frames of Dataset

1 as training data, and used the last 506 labelled frames for

evaluation. Dataset 2 was used solely for evaluation, serv-

26’ MoviŶg TruĐk Đuďoid.  The aĐtual ŵoviŶg truĐk ŵay ďe shorter 
;there are ŵoviŶg truĐks of differeŶt leŶgths: 24’, 22’, ….Ϳ.

Figure 2: Example cuboid model
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Figure 3: Camera geometry. Both the X-axis of the world

frame and the x-axis of the image frame point out of the

page.

ing to assess the ability of the algorithm to generalize to

different conditions.

The camera was calibrated in the lab using standard pro-

cedures [15]: The focal length was estimated to be f =
1, 142 pixels and the principal point (px, py) was found to

be centred vertically and displaced by only 3.5 pixels to the

right horizontally. Skew was assumed to be zero, and pixel

aspect ratio was assumed to be unity. For both datasets the

camera was mounted on a tripod on an overpass overlooking

a highway; Fig. 3 shows the geometry in profile. We mea-

sured the camera height above the ground plane to be ap-

proximately D = 8.01 meters for Dataset 1, and D = 8.36
meters for Dataset 2. The roll angle of the camera was mini-

mized using the camera’s internal electronic levelling gauge

and we assume it to be zero in the following. We down-

sampled the video to 360 × 270 pixel resolution prior to

processing to reduce computation time. Both datasets were

hand-labelled to identify a bounding box and semantic cat-

egory for each vehicle in each frame. A unique ID was

assigned to each unique vehicle, tracked across frames.

We assume a planar horizontal ground surface and adopt

a right-hand world coordinate system [X,Y, Z] centred at

the camera, where the Z-axis is in the upward normal di-

rection (Fig. 3). Without loss of generality, we align the
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x-axis of the image coordinate system with the X axis of

the world coordinate system (both out of the page in Fig.

3). For notational simplicity we locate the centre of the im-

age coordinate system at the principal point.

Under these conditions, a point [X,Y ]T on the ground

plane projects to a point [x, y]T on the image plane accord-

ing to

λ[x, y, 1]T = H[X,Y, 1]T , (1)

where λ is a scaling factor and the homography H is given

by ([7], Page 328, Eqn. 15.16):

H =





f 0 0
0 f cosφ −fD sinφ
0 sinφ D cosφ



 (2)

where φ is the tilt angle of the camera relative to the ground

plane: φ = 0 when the camera points straight down at the

ground surface and increases to π/2 as the camera tilts up

toward the horizon.

Conversely, points in the image can be back-projected

to the ground plane using the inverse of this homography,

[X,Y, 1]T = λH−1[x, y, 1]T , where

H−1 = (fD cos 2φ)
−1





D 0 0
0 D cosφ fD sinφ
0 − sinφ f cosφ





(3)

In Euclidean coordinates this backprojection can be written

as:
[

X
Y

]

=
D

f cosφ− y sinφ

[

x
y cosφ+ f sinφ

]

(4)

This inverse homography will be used to back-project the

lane boundaries detected and grouped in the image back to

the ground plane.

Our method will also involve projection of 3D cuboid

vehicle models resting on the ground plane to the image for

comparison with detected foreground segments, and for this

we employ the 3×4 homogeneous camera projection matrix

P : x = PX, where P = KR[I | 0], and K and R are the

3×3 instrinsic parameter and rotation matrices respectively.

Given our assumptions, the intrinsic matrix K reduces to:

K =





f 0 px
0 f py
0 0 1



 (5)

and the rotation matrix R reduces to:

R =





1 0 0
0 cos(φ) sin(φ)
0 sin(φ) − cos(φ)



 (6)

We measured ground truth values for the tilt angle φ us-

ing an SPI digital protractor: φ = 81.2 deg For Dataset 1,

φ = 73.4 deg For Dataset 2. These ground truth values will

be used to validate the camera tilt estimates made automat-

ically from the imagery (see below).

3. Algorithm

Our method consists of a 3D modelling stage and an in-

ference stage (Fig. 4).

3.1. 3D Modelling Stage

In the 3D Modelling Stage, the geometry of the ground

plane lane structure of the highway is first established. This

is then used to learn the image appearance of 3D cuboid

vehicle models populating these lanes.

3.1.1 3D Roadway Geometry Estimation

Our goal is to facilitate traffic analytics by automatically

estimating the projective relationship between the highway

ground plane and the image, and to automatically recover

the lane structure of the roadway. To achieve this, we use

a ‘preview video’ consisting of the 200 frames immediately

preceding each labelled dataset to burn in an online mixture

model background subtraction algorithm [6] in order to es-

timate a reliable background image that clearly shows the

lane structure, without occlusions from vehicles (Fig. 5(a)).

We then employ the parallelism method of Corral-Soto &

Elder [4] for automatic single-view calibration and rectifi-

cation. This algorithm first detects and groups local oriented

structure into longer curve segments (Fig. 5(b)). (Although

the highway shown here is straight, the method can handle

curved highways.) These segments are then used together

with knowledge of the camera height and intrinsic param-

eters to automatically estimate the camera tilt angle φ that

maximizes the parallelism of the curve segments when they

are back-projecrted to ground plane coordinates using the

inverse homograph H−1. (Fig. 5(c)).

Note that the extracted curve segments include the lane

boundaries but also other parallel curves generated by the

meridian, parallel lane markings for the HOV lanes, shoul-

der etc. In order to distinguish the traffic lanes from

these other structures, we first identify as candidate lanes

the curvilinear strips between all adjacent pairs of parallel

curves. We then use the foreground segments detected in

the preview video to identify which of these candidate lanes

is active. Due to the oblique pose of the camera, the low-

est point in each of these segments tends to lie close to the

ground plane. We therefore identify the ground plane lo-

cation of each segment by the back-projection of its lowest

point in the image and then accumulate these points over

time for each of the candidate lanes (Fig. 5(d)). Since

some of these foreground segments will actually correspond

to multiple vehicles spanning multiple lanes, the frequency

distribution of these points (Fig. 5(e)) cannot be taken as

an accurate estimate of traffic volume, but it is sufficient to

identify the active lanes. In our system, we treat as active

any lane containing more than 10 points (Fig. 5(f)).
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Figure 4: Algorithm Overview

3.1.2 3D Vehicle Projection Pre-Computation

The estimation of 3D roadway geometry gives us the po-

tential to transfer observations and hypotheses between the

3D scene and the 2D image . We will use this to implement

an analysis-by-synthesis approach in which 3D hypotheses

of vehicle configurations on the roadway are evaluated in

terms of how well their image projections align with de-

tected image foreground segments. The first step is to de-

termine the exact 3D vehicle models to employ.

3D Vehicles Classes

In their 3D modelling approach, Song & Nevatia employed

CAD models for three vehicle categories (sedan, SUV,

truck). For highways, the distribution of vehicles types is

more diverse (Fig. 1) and there is considerable variation

in dimensions and shape within each class. For these rea-

sons, we elected to use simpler 3D cuboid models and to

learn optimal dimensions for these models from training

data. Specifically, we first manually identified the subset

of segments in the training dataset that involve only one

vehicle, and determined the lane for each by the lowest

point in the segment. We then defined a ground plane ori-

gin for the modelling of the segment as the back-projection

of the projection of the centroid of the image segment onto

the midline of the lane. Next, we instantiated a set of 3D

cuboid models uniformly sampling a range of plausible di-

mensions and locations, centred at the origin (Table 1). Fi-

nally, we identified the the set of parameters that maximized

the intersection-over-union (IOU) of the image projection

of the cuboid with the observed image segment.

Table 1: 3D cuboid model sampling on training data. Loca-

tions are relative to ground plane origin (see text).

Parameter Min (m) Max (m) Resolution (m)

Location -3.0 3.0 1.0

Length 2.2 23.0 0.2

Width 0.8 2.6 0.2

Height 1.1 5.0 0.2

Fig. 6 shows the resulting distribution of cuboid di-

mensions over the training dataset. Note the broadness of

the distribution, particularly in the length dimension. To

partition the distribution into more compact categories, we

ran the k-means algorithm for k = [1 . . . 10], repeating

n = 1000 times with random initial conditions for each

value of k and selecting the solution for each value of k that

minimizes the average intra-cluster variance. The number

k of vehicle categories was selected to optimize the accu-

racy of traffic volume estimates on our training dataset: we

found that k = 4 yields optimal performance (Fig. 6). We

discuss this optimization in more detail in Section 4.

Table 2 shows the vehicle dimensions for the four clus-

ter centres. Although there is not a 1:1 mapping between

these clusters and semantic vehicle categories, Class 1 cor-

responds roughly to a compact car, Class 2 to an SUV, pas-

senger van or pickup truck, Class 3 to a cube van and Class

4 to a semi-trailer.

19



(a) (b)

(c) (d)

(e) (f)

Figure 5: 3D roadway geometry estimation for Dataset 1.

(a) Background image recovered from initial 200 frames.

(b) Line segments detected and grouped in the background

image. (c) Rectified background image with initial lane

boundary estimates overlaid. (d) Rectified background im-

age with vehicle locations used to identify active lanes. (e)

Distribution of traffic over lanes. (f) Labelling of active

lanes in the image.

Table 2: Dimensions for the four vehicle classes automati-

cally learned from our training data.

Class Length (m) Width (m) Height (m)

1 4.2 1.7 1.5

2 5.7 1.8 1.7

3 9.2 2.6 4.6

4 23.0 2.6 4.0

Projection of 3D Models to the Image

Having estimated the homography H relating the ground

plane to the image, the lane structure in ground plane co-

ordinates, and the 3D cuboid model classes, we can now

pre-compute an estimate of the expected image appearance

Figure 6: K-means clustering of vehicles in training dataset.

(silhouette) of each vehicle class for each traffic lane and

for each location along each lane. For the sake of efficiency

we assume that each vehicle will be centred within a lane.

We sample lane locations at 1m resolution.

3.2. Online Inference Stage

3.2.1 Foreground Image Segmentation

We restrict our analysis to vehicles lying within or at least

intersecting region of interest in the lower portion of the

video frame, to avoid very distant vehicles near the horizon

(Fig. 7(a)).

We employ a foreground segmentation method similar

to the first stage of the object detection method of Elder et

al. [6]. While the original method, intended for face de-

tection, employs a probabilistic combination of background

subtraction, motion and colour cues, colour cues have lit-

tle discriminative value in our application due to the broad

diversity in the colour of vehicles. We therefore omit the

colour cues in our system.

The goal is to independently label each pixel in the image

as foreground or background. The background subtraction

component of the algorithm is based on a 2D adaptive Gaus-

sian mixture model for pixel colour that ignores the luma

channel to minimize responses to shadows. The motion

component is a simple two-frame difference. The proba-

bilistic combination of these two cues imbues the algorithm

with a degree of invariance to traffic speed, since the back-

ground subtraction works well for slower speeds and the

motion detection works well for higher speeds. Note, how-

ever, that for stalled traffic the background subtraction algo-

rithm will eventually begin to interpret the stopped vehicles

as background.
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Figure 7: Online inference. (a) Example frame from the

training dataset. The white box indicates the ROI. (b) Fore-

ground image segments computed using the GMM algo-

rithm. (c-d) Maximum probability configuration of cuboids

returned by our MCMC algorithm.

Marginal conditional likelihoods for the two cues were

learned from the labelled training data and combined under

a naı̈ve Bayes assumption, and priors were learned from the

proportion of the image occupied by ground truth bound-

ing boxes. An initial segmentation is then determined by

applying a threshold p0 = 0.08 to the posterior ratio, and

the resulting connected foreground components that exceed

a criterion area A0 = 60 pixels are identified as foreground

segments. These thresholds were optimized to maximize

the IOU of detected segments with ground-truth bounding

boxes on the training dataset. Fig. 7(b) shows the detected

foreground segments for an example video frame. In the

following we will use the label GMM (Gaussian Mixture &

Motion) to identify this foreground segmentation method.

3.2.2 3D Vehicle Configuration Optimization

Given a foreground image segment we wish to estimate the

number of vehicles most consistent with the shape and size

of the image segment, as well as the lane, location and class

of each of these vehicles. As a measure of consistency we

employ the intersection over union (IOU) of the image seg-

ment with the union of projected 3D cuboid vehicle models.

We first identify the lanes overlapped by the image seg-

ment and compute the centroid of each lane’s portion of

the segment. These centroids are then back-projected to the

ground plane using our inverse homography H−1 (Eqn. 4)

and the closest sample point on each lane’s ground plane

midline is identified as the origin for the search. The search

space consists of seven locations, centred on the origin and

spaced at 1m intervals along the midline.

If we knew that a certain image segment was created by

k vehicles in k specific lanes, there would still be a total of

(7× 4)
k
= 28k possibly configurations, given 7 locations

per lane and 4 vehicle classes. Thus, given a foreground

image segment that overlaps n lanes, the total number N of

possible configurations is given by

N =

n
∑

k=1

28kn!

(n− k)!k!
(7)

We find that foreground image segments can overlap up

to five active lanes, resulting in a total of more than 20

million possible configurations: too many to explore ex-

haustively, especially online. Instead, we employ a Markov

Chain Monte Carlo (MCMC) method to explore the more

probable regions of the configuration space within a rea-

sonable amount of time.

We initialize the chain with a configuration computed us-

ing a simple greedy algorithm (Fig. 8). We first identify

the lane with the largest overlap with the foreground image

segment. We then exhaustively search the 28 possible loca-

tion/class solutions within this lane, committing to the so-

lution that maximizes the IOU with the whole segment. We

then proceed to the lane intersecting the largest remaining

unexplained portion of the foreground image segment and

determine the solution in this lane that maximizes the IOU

of the foreground image segment with the union of the two

selected model projections. Note that it may be the case that

for a particular lane no solution increases the IOU; in this

case we assume no vehicle exists in this lane. This process

continues until all intersected lanes have been considered.

Given this initial solution, we run MCMC, using the IOU

as a model for the probability of each proposed configura-

tion. Possible moves include: adding a vehicle in an unoc-

cupied lane overlapped by the image segment, removing a

vehicle, moving a vehicle to an adjacent location within a

lane, and incrementing or decrementing the class of a ve-

hicle by 1. Given this list of possible moves it is clear

that any possible configuration can be reached. We im-

posed a time budget of 1 second per segment, which we

found can accommodate 506 iterations of MCMC. We take

as our solution the maximum probability configuration in

the chain. Fig. 8(c-d) show the configurations selected for

the segments in an example frame of the training video, in

image and ground plane coordinates. We label our algo-

rithm GMM3D to capture the combination of our GMM

foreground segmentation algorithm with our 3D analysis-

by-synthesis optimization of the vehicle configuration for

each foreground segment.
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(a) (b)

Figure 8: Greedy initialization of our MCMC algorithm. (a)

Green x show sampled traffic lane midline points and red

dots indicate the centroids of the intersection of the fore-

ground image segment with each lane. (b) The initial con-

figuration selected by the greedy algorithm - Green area cor-

responds to the segment’s area. Note that the furthest lane

remains unoccupied since adding a vehicle there reduces the

total IOU.

4. Results

We evaluate our proposed GMM3D method for traffic

counting and compare against the state of the art on two

test video clips. Camera tilt angles were automatically esti-

mated to be φ = 78.3 deg. (error = -2.9 deg.) for Dataset

1, and φ = 69.5 deg. (error = -3.9 deg) for Dataset 2. We

use three measures of performance: 1) Mean absolute er-

ror (MAE) per frame, 2) Accuracy of the total traffic flow

over the duration of the clip (unique vehicle count), and 3)

Accuracy of estimated vehicle dimensions.

4.1. Per­Frame Traffic Volume

To assess the value of 3D modelling for traffic analyt-

ics, we compare the performance of two variations of a 2D

method against two variations of our 3D method. In the 2D

methods, the number of foreground segments is used as an

estimate of the number of vehicles in the frame. We con-

sider two foreground segmentation algorithms: our GMM

background subtraction + motion algorithm, adapted from

[6], and the Principal Component Pursuit (PCP) method

[11] that has been reported in previous work to outper-

form Gaussian mixture background subtraction algorithms

- Code obtained from sites.google.com/a/istec.

net/prodrig/Home/en/pubs/incpcp. Against

these we compare two versions of our 3D algorithm: one

using the GMM foreground segmentation as input, labelled

GMM3D, and the second using the PCP foreground seg-

mentation as input, labelled PCP3D.

The results are shown in Table 3. The two 2D methods

perform comparably on both datasets. The GMM3D per-

forms better than both 2D methods on both datasets, while

the PCP3D method performs comparably on Dataset 1 but

far better on Dataset 2.

Table 3: Per-frame volume estimation results. n̄ is the mean

ground-truth number of vehicles per frame.

Test Set 1

n̄ MAE MAE%

Test Set 1

GMM 7.3 1.08 14.77

PCP 7.3 1.03 14.17

GMM3D 7.3 0.74 10.13

PCP3D 7.3 1.07 14.71

Test Set 2

n̄ MAE MAE%

GMM 9.4 2.91 30.93

PCP 9.4 2.50 26.56

GMM3D 9.4 1.90 20.22

PCP3D 9.4 1.37 14.58

4.2. Total Traffic Volume

We employ our GMM3D system to estimate total

traffic volume (unique vehicle count) over our two test

datasets, and compare against the particle method of

Barcellos et al. [1], as the code is available online (ob-

tained from https://www.researchgate.net/

publication/278714978_Matlab_code_A_

Novel_Video_Based_System_for_Detecting_

and_Counting_Vehicles_at_User).

In the Barcellos method, a vehicle is detected and tracked

as a group of particles, approximated by its convex hull.

For each lane, a ‘virtual loop’ on the image is identified by

hand. Any intersections between the convex hull represen-

tation of a vehicle and one or more virtual loops are iden-

tified. While one vehicle may intersect with more than one

virtual loop, only the lane with the greatest intersection has

its counter incremented. Barcellos et al. do not provide de-

tailed rules for determining the location and width of these

virtual loops. We therefore defined them to be qualitatively

similar to those shown in their paper ([1], Figs. 8-9).

Since our GMM3D model assigns each vehicle to a spe-

cific lane, traffic counting is more straightforward. For each

lane we identify a virtual gate in the image that is the pro-

jection of a ground plane line orthogonal to the lane bound-

aries. For each identified 3D vehicle model we extract its

footprint, i.e., the contact surface between the model and the

ground plane, which lies entirely within one lane (see Fig.

9). A lane counter is then incremented whenever a frame

with a footprint on the gate follows a frame with no foot-

print on the gate. (This method works as long as two dif-

ferent vehicles never cross a line in two consecutive frames,
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