
Estimating Camera Tilt from Motion without Tracking

Nada Elassal

Center for Vision Research

York University

Toronto, Canada

nada.elassal@gmail.com

James H. Elder

Center for Vision Research

York University

Toronto, Canada

jelder@yorku.ca

Abstract—Most methods for automatic estimation of external
camera parameters (e.g., tilt angle) from deployed cameras
are based on vanishing points. This requires that specific static
scene features, e.g., sets of parallel lines, be present and reliably
detected, and this is not always possible. An alternative is to use
properties of the motion field computed over multiple frames.
However, methods reported to date make strong assumptions
about the nature of objects and motions in the scene, and
often depend on feature tracking, which can be computationally
intensive and unreliable. In this paper, we propose a novel
motion-based approach for recovering camera tilt that does not
require tracking. Our method assumes that motion statistics
in the scene are stationary over the ground plane, so that
statistical variation in image speed with vertical position in the
image can be attributed to projection. The tilt angle is then
estimated iteratively by nulling the variance in rectified speed
explained by the vertical image coordinate. The method does
not require tracking or learning and can therefore be applied
without modification to diverse scene conditions. The algorithm
is evaluated on four diverse datasets and found to outperform
three alternative state-of-the-art methods.

Keywords-Camera Calibration; Camera Pose; Image Recti-
fication; Optic Flow; Surveillance

I. INTRODUCTION

A major challenge for automatic video analytics is the

geometric distortion induced by projection to the image

that complicates almost all tasks, including object detection,

velocity estimation and crowd analysis. For many systems,

camera roll is small and focal length is known or can be

estimated, so that the critical remaining unknown is camera

tilt (Fig. 2). If camera tilt can be estimated, image and video

observations can be corrected for the effects of projection,

allowing unbiased analysis (Fig. 3). This correction is critical

for traffic analytics [1] and crowd counting [2], for example.

II. PRIOR WORK

Methods for auto-calibrating external camera parameters

typically rely upon static features such as families of straight

parallel lines, curves [1] or orthogonal structure [3]–[7] in

the scene from which vanishing points can be computed.

However, in many situations these static features are not

present, are confounded by irregularities or are not easily

detected due to occlusions and shadows (Fig. 1(a)).

An alternative or complementary approach is to use mo-

tion information from the active agents such as pedestrians

and vehicles in the scene. Kuo et al [8] estimated camera

parameters from sequences of key-point features projecting

from the main joints of a walking human. However, this

approach has only been demonstrated using motion-capture

data; reliable automatic detection of these key points from

surveillance video in crowded scenes would be challenging.

More relevant to surveillance applications are calibration

methods that do not depend upon detailed recovery of object

structure. Lv et al [9] developed an approach based on

tracking the head and foot locations of a pedestrian. Bose et

al [10] reported a more general approach based on tracking

the centroids of multiple objects (pedestrians or cars). Zhang

et al [11] estimated two horizontal vanishing points from

the principal axes of segmented moving vehicles and a

vertical vanishing point from the orientation of segmented

pedestrians in the scene.

While not dependent upon detailed object structure, these

methods do require accurate object segmentation. Dubska et

al [12] have recently reported a motion-based method that

relaxes this requirement. Local feature points on vehicles

are tracked to obtain straight motion trajectories that can be

used to estimate one ground plane vanishing point.

While not requiring segmentation, this method still re-

quires accurate tracking of features over time, and assumes

that the tracked objects are moving at constant speed along

straight trajectories in the scene. In this paper, we present a

novel method for recovering camera pose, specifically tilt,

that does not require tracking and does not depend upon

constant speed or straight trajectories.

The proposed method is anchored on a relatively general

assumption: we assume zero correlation of object speed in

the scene (not the image) with position on the ground plane

(in scene coordinates). Importantly, the method makes no as-

sumptions about the directions of motion or the distribution

of speeds. Advantages of the proposed approach include:

1) No dependence on the visibility of regular static

structures in the scene.

2) No requirements that moving objects be segmented.

3) No dependence on object shape analysis.

4) No requirement that objects or features be tracked over

2017 14th Conference on Computer and Robot Vision

978-1-5386-2818-8/17 $31.00 © 2017 IEEE

DOI 10.1109/CRV.2017.36

72

2017 14th Conference on Computer and Robot Vision

978-1-5386-2818-8/17 $31.00 © 2017 IEEE

DOI 10.1109/CRV.2017.36

72



(a) (b) (c)

Figure 1: a) Sample frame from marathon dataset, b) Corresponding optical flow field, c) Scatter plot of speed (magnitude

of optical flow vectors) vs y coordinate. (y increases upward.)

time.

5) No assumption about the direction(s) of motion.

6) No assumption that objects move in the same direc-

tion.

7) No assumption that individual motions are linear or

constant speed.

8) No dependence on learned parameters, meaning that

the approach can be applied to a broad range of

situations without retraining.

Fig. 1 illustrates the idea behind the approach. Despite

stationary motion statistics over the right portion of the

ground plane (a), the oblique angle of the camera induces

a projective distortion on the optic flow (b), resulting in

a decline in image speed with height in the image. This

statistical relationship can be captured with a simple affine

model (c). The strength of this affine relationship generally

increases with the camera tilt angle φ relative to the ground

surface normal (Fig. 2a).

Given an estimate φ̂ of the tilt angle, the optic flow field

can be re-rendered in rectified coordinates (Fig. 2b) and this

should result in a reduced correlation between image speed

and height in the image. Thus the tilt angle can be estimated

by gradient descent on the variance in the rectified optic flow

explained by the affine model.

We stress that this algorithm makes no assumption about

the azimuthal angle of the camera relative to the motion

in the scene. To verify this, we evaluate performance for

a range of scenarios (Fig. 3): while in our highway and

marathon datasets image motion is primarily along the y-axis

of the camera frame, in our outdoor pedestrian dataset the

motion directions are diverse, and in our indoor pedestrian

dataset the dominant motion is roughly 20 deg from the x-

axis, i.e., much closer to the x-axis than the y-axis.

III. GEOMETRY

We assume that camera focal length is known and that

imagery has been pre-processed to square the pixels and zero

the skew. (These parameters are easily measured in the lab.)

We also assume negligible camera roll, which is reasonable
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Figure 2: Camera geometry. The world coordinate frame

is centred at the camera and aligned with gravity. Both

the X-axis of the world frame and x-axis of the image

frame point toward the reader. Tilt angle φ (a) is estimated

by minimizing the correlation of rectified speed with the

rectified y-coordinate yr (b).

for many installations.1 For notational simplicity we locate

the centre of the image coordinate system at the principal

point.

1In principal, our method could be generalized to estimate camera roll
by searching for the direction in the image that maximizes the correlation
with image speed, but we have not yet explored this possibility.
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Figure 3: Sample frames and example rectifications computed using our trackless method for our highway, outdoor pedestrian,

marathon and indoor pedestrian datasets. Note that rectifications induce distortions for objects not lying flat on the ground

plane. These rectifications are shown only to verify the correctness of the tilt estimates: parallel lines on the ground plane

should appear parallel in the rectified images.

We assume a planar horizontal ground surface2 and adopt

a right-hand world coordinate system [X,Y, Z] centred at the

camera, where the Z-axis is in the upward normal direction

(Fig. 2). Without loss of generality, we align the x-axis of

the image coordinate system with the X axis of the world

coordinate system (both out of the page in Fig. 2).

Under these conditions, a point [X,Y ]T on the ground

plane projects to a point [x, y]T on the image plane accord-

ing to

λ[x, y, 1]T = H[X,Y, 1]T , (1)

where λ is a scaling factor and the homography H is given

by ( [13], Page 328, Eqn. 15.16):

H =

⎡
⎣ f 0 0

0 f cosφ −fD sinφ
0 sinφ D cosφ

⎤
⎦ (2)

Here f is the focal length in pixels, D is the height of the

camera and φ is the tilt angle of the camera relative to the

ground plane: φ = 0 when the camera points straight down

at the ground surface and increases to π/2 as the camera

tilts up toward the horizon.

Conversely, points in the image can be backprojected

to the ground plane using the inverse of this homography,

[X,Y, 1]T = λH−1[x, y, 1]T , where

H−1 = (fD cos 2φ)
−1

⎡
⎣ D 0 0

0 D cosφ fD sinφ
0 − sinφ f cosφ

⎤
⎦ (3)

2If the surface is planar but not horizontal, our method will estimate the
tilt angle relative to the ground but this will of course be offset relative to
gravity.

In Euclidean coordinates this backprojection can be written

as: [
X
Y

]
=

D

f cosφ− y sinφ

[
x

y cosφ+ f sinφ

]
(4)

As a final step, we can apply the homography H of Eqn.

(2) with a tilt angle of φ = 0 to the scene points [X,Y ]T

computed using (4), transferring these scene points to image

points [xr, yr]
T taken by a “bird’s eye” virtual camera (Fig.

2b), yielding a rectified plan view of the ground surface seen

from a height D:[
xr

yr

]
=

f

f cosφ− y sinφ

[
x

y cosφ+ f sinφ

]
(5)

Taking the time derivative, we can compute the rectified

optic flow field:

vr =
f

(f cosφ− y sinφ)
2

[
fx′ cosφ+ (xy′ − x′y) sinφ

fy′

]

(6)

This can also be expressed as:

vr =

[
x′
r

y′
r

]
=

f

(yh − y)
2
sinφ

[
x′yh + xy′ − x′y

fy′/ sinφ

]

(7)

where yh = f cotφ is the image projection of the horizon

(Fig. 2a).

Our key assumption is that the rectified speed vr = |vr|,
when averaged over rectified image location (xr, yr) and

time, is invariant with the vertical image coordinate. Thus

an estimate of the tilt angle φ can be evaluated by measuring

the correlation of vr (xr, yr|φ) with yr.
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Figure 4: Algorithm overview

IV. ALGORITHM

Figure 4 provides an overview of the algorithm.

A. Objective Function

Given an estimate φ̂ of the tilt angle, we can compute

the rectified speeds vr

(
xr, yr|φ̂

)
using Eqn. 7. To assess

correlation with yr we use the simple affine model v̂r =
ayr + b and determine maximum likelihood estimates of

the parameters (a, b) by linear regression. The strength of

this correlation is measured by the proportion of variance

R2

(
φ̂
)

explained by the model, given the estimated tilt φ̂:

R2

(
φ̂
)
= 1−

E

[
(vr − v̂r)

2

]

E

[
(vr − v̄r)

2

] (8)

where v̄r is the average rectified speed over the rectified

image and some interval of time. We seek the tilt angle φ∗

that minimizes R2

(
φ̂
)

.

B. Optimization

We estimate φ∗ by iterative minimization of Eqn. 8 using

MATLAB’s fminsearch (Nelder-Mead simplex method). In

our experiments we repeat the search from a coarse regular

sampling of initial estimates 0 ≤ φ̂ ≤ π/2, selecting the

φ∗ that yields the minimum R2. However in practice we

find that given sufficient input data (> 100 frames) the error

function becomes convex and a single search initiated at

φ̂ = π/4 suffices.

C. Optical Flow Computation

We employ the optical flow algorithm of Xu et al [14]:

Fig. 1(b) shows an example for the marathon dataset. Since

we are only concerned with motion on the ground plane,

motion vectors above our current estimate of the horizon

ŷh = f cot φ̂ are ignored.

Ground plane motion will generally be sparse and spa-

tially interleaved with noise due to small environmental

motions, camera vibration etc. that does not correlate with

yr and thus could reduce accuracy. This problem can be

(a) (b)

(c) (d)

Figure 5: Analysis of algorithm dependence on key vari-

ables, for the highway dataset. Shading and error bars

indicate standard error of the mean. (a-c) show results using

the optic flow algorithm of Xu et al [14]. (a), (b) and (d)

show results for 300-frame sequences. a) Average proportion

of variance R2 explained by the affine model as a function of

the optic flow threshold p. b) Average tilt error of trackless

algorithm as a function of the optic flow threshold p. The

red dot indicates the threshold p chosen automatically by

the algorithm. c) Average tilt error of trackless algorithm

as a function of the number of video frames analyzed. d)

Average tilt error of trackless algorithm based on the optical

flow algorithms of Xu et al [14] and Drulea & Nedevschi

[15].

(a) (b)

Figure 6: Example optical flow vector field from the

marathon dataset, before (a) and after (b) noise removal.

The automatically selected speed threshold is p=28%.

mitigated by filtering out all but the largest p% of motion

vectors from each image frame: Fig. 6 shows an example

for the marathon data set. However, this leaves the problem

of estimating the optimal threshold p.

To avoid supervised learning of this parameter, which may

not generalize to novel scenarios, we employ an adaptive

method to select p individually for each video sequence. In

particular, we select the threshold p (0% < p ≤ 100%) that
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maximizes R2(0), the variance in unrectified image speed

v (x, y) explained by correlation with the vertical image

coordinate y (Fig. 1(c)). Fig. 5(a) shows that for our highway

dataset, the proportion of variance explained peaks when

a relatively small fraction (2%) of the motion vectors are

employed and Fig. 5(b) shows that this threshold yields

nearly minimal error in the resulting tilt angle estimate. Thus

by selecting the threshold that maximizes variance explained

in the unrectified image, we adaptively optimize the accuracy

of the algorithm.

We have also evaluated dependence on the optic flow

method employed (Fig 5(d)), comparing the methods of Xu

et al [14] and Drulea & Nedevschi [15], both highly ranked

on the Middlebury dataset [16]. While both work reasonably

well, we find the algorithm of Xu et al [14] more accurate

for this application and dataset.

Fig. 5(c) shows how accuracy varies as a function of

integration time. For the highway dataset, performance is

very good for durations of 50 frames (1.7 sec) or more.

V. EVALUATION

A. Implementation

We employed the optical flow method

of Xu et al [14] (code downloaded from

www.cse.cuhk.edu.hk/leojia/projects/flow), with parameters

matching those used by the authors for evaluation on

the Middlebury Benchmark: regularization strength: 6,

occlusion handling: 1 and large motion: 0. The average run

time for optical flow computation is 45 sec per frame. We

implemented our algorithm in MATLAB and have not yet

optimized the code for speed (run times listed below). All

experiments were conducted on a 4-core desktop computer.

Our code and datasets will be released for public use.

B. Datasets

We evaluate our proposed method on 4 diverse datasets

(Fig. 3) recorded with 3 different camera/lens systems to

assess the generality of the approach: 1) a highway scene

where the moving agents are vehicles, 2) an outdoor campus

scene where the moving agents are pedestrians, 3) an urban

marathon scene where the moving agents are runners and 4)

an indoor scene where the moving agents are pedestrians.

The highway and outdoor pedestrian datasets were

recorded with a Point Grey Cricket camera equipped with a

16 mm lens. The marathon and indoor pedestrian datasets

were recorded with a Canon EOS Rebel T3i camera

equipped with a 40 mm lens. All camera/lens systems were

calibrated in the lab using a standard calibration procedure to

determine focal length f (Table I) and principal point. Frame

rate was 30 fps for all datasets and each was partitioned into

5 clips of 300 frames each.

For the highway dataset, ground truth camera tilt angle

was estimated manually from the horizon image height yh
using the relation yh = f cotφ (Eqn. 4). For the other three

datasets, ground truth tilt angle was measured directly using

a digital inclinometer.

C. Evaluation & Comparison with Static Methods

Table I shows quantitative performance of the proposed

method on our four datasets. The mean threshold parameter

p ranged from 2% to 28% over these datasets, and mean tilt

error ranged from 0.46 deg to 1.48 deg.

Fig. 3 shows example rectifications based on these es-

timated tilt angles. Since rectification can grossly distort

objects (e.g, people, cars) that do not lie flat on the ground

plane, it is unlikely that the rectified video would be directly

useful for visual analytics. However, the rectified imagery is

useful for visual verification: if tilt estimates are accurate,

lines that are parallel on the ground plane should appear

parallel in the rectified view. These estimated tilt angles can

then be used by downstream algorithms to convert measured

image quantities (e.g., image speed in pixels/sec) to scene

quantities (e.g., ground plane speed in m/s).

To compare our method to prior approaches, we were

able to secure code directly from the authors of three prior

methods that use static features (lines or curves) to estimate

vanishing points and tilt angle [1], [5], [17]. All methods

were provided with focal length and principal point, and

were required only to estimate tilt angle.

We note that the availability of regular static structure

varies widely in our datasets, and so we expect that the

performance of these methods will vary widely as well.

In the highway dataset there is one strong family of hor-

izontal parallel lines but other structure is weak. For the

outdoor pedestrian dataset there is moderate structure in

three orthogonal directions, but it is not dominant. In the

marathon scene the main family of parallel horizontal lines

is largely occluded by the runners. Finally, in the indoor

pedestrian dataset there is one strong family or horizontal

lines and some significant vertical structure. On the other

hand, all scenes contain significant ground plane motions,

but of varying kinds and in various directions.

Fig. 7 shows the resulting performance of these prior

static methods alongside ours. For the highway dataset, mean

absolute error for our method was 1.06 deg, much better than

the methods of Tal & Elder and Wildenauer & Hanbury

(errors of 4.73 deg and 55.28 deg, respectively), which

expect regular static structure in more than one orthogonal

direction. However performance of our motion method was

not quite as good as the method of Corral-Soto & Elder (0.55

deg), which we note was designed specifically for highway

applications and depends on only a single family of parallel

lane boundaries to estimate tilt angle.

For the outdoor pedestrian dataset, mean absolute error

for our method was only 0.46 deg. We note that our method

is highly accurate here despite the substantial variations in

the directions and speeds of motion of the pedestrians in this

video, highlighting the fact that our method does not require
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Table I: Parameters and experiment results of the proposed method on four datasets. Run times are exclusive of the time

required to compute the optic flow map.

Dataset
Image size

(pixels)
Focal length

(pixels)
True tilt angle

(deg)
p (%)

Mean error
(deg)

Run time per frame (msec)

Highway 275 x 155 174 87.8 2 1.06 106

Outdoor Pedestrian 320 x 165 953 81.0 10 0.46 383

Marathon 324 x 156 700 76.4 28 1.48 416

Indoor 320x182 584 60.7 5 0.68 350
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Figure 7: Performance of the proposed method compared with three state-of-the-art static methods from Corral-Soto &

Elder [1], Tal & Elder [5] and Wildenauer & Hanbury [17] on (a) the highway dataset, (b) the outdoor pedestrian dataset,

(c) the marathon dataset and d) the indoor dataset.

that motions of individual agents be similar. The large errors

produced by the prior static methods we evaluated (6.53,

3.05, 23.41 deg) presumably reflect the relative sparseness

of static regularities in the scene.

For the marathon dataset, mean absolute error for our

method was 1.48 deg, substantially better than competing

static methods (errors of 10.45, 11.35 and 19.99 deg). Again,

this superiority reflects the relatively strong motion signals

and the fact that the static cues are largely occluded by the

runners.

For the indoor pedestrian dataset, mean absolute error for

our method was only 0.68 deg. Note that in this dataset

the dominant direction of motion is roughly 20 degrees

counterclockwise from the x-axis of the image. The excellent

performance of the proposed algorithm for this example

illustrates the invariance of the method to the dominant

direction of motion. The method of Corral-Soto & Elder [1]

also performs relatively well here (1.45 deg), even though

it was originally designed for highway applications. This

is presumably due to the strong linear structure of the

floor tiles, which are qualitatively similar to traffic lanes.

Unfortunately the other two static methods [5], [17] are

much less accurate (28.22 and 6.35 deg), despite the fairly

strong presence of linear structure in one horizontal and one

vertical direction.

In summary, we find that our proposed trackless motion-

based method performs quite consistently over a range of

scenes and motion distributions. The static methods we

have tried, on the other hand, are quite sensitive to the

nature and density of regular linear structure. This is not

to say that these static methods are not useful. The method

of Corral-Soto & Elder [1] should work well for scenes

with at least one clearly visible family of parallel curves

in the ground plane (as seen for the highway and indoor

pedestrian datasets) and the methods of Tal & Elder and

Wildenauer & Hanbury [5], [17] should work well for scenes

with clearly visible linear structure in three orthogonal

directions. However our results do suggest that when this

static structure is less visible, either due to the nature of

the scene or occlusion by moving agents such as vehicles

or pedestrians, the proposed trackless motion-based method

for tilt estimation may be more reliable, and thus may

complement these static methods.

D. Comparison with Motion-Based Methods

It would be ideal to compare our proposed method with

the prior motion-based methods from Dubska et al [12] and

Zhang et al [11] directly on a common dataset as well.

Unfortunately, despite contacting authors we were unable

to obtain code or datasets used for either method. The best

we can do at this stage is to compare performance of these

prior algorithms on their proprietary datasets, as reported by

the authors, with the performance of our algorithm on our

own dataset. (We caution that since there could be systematic

differences in the difficulty of the datasets, this comparison

should not be used to formally rank the algorithms.)

Comparison with these prior motion-based methods is

further complicated by the fact that in this prior work the
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Figure 8: Performance of the proposed method on the

highway dataset compared with two state-of-the-art motion-

based methods from Dubska et al [12] and Zhang et al [11]

on different datasets. a) Mean absolute deviation of point

pairs (%), b) Maximum absolute deviation of point pairs

(%).

authors did not have ground truth tilt estimates. Instead, they

manually identified point pairs in the image known to lie in a

horizontal plane and to be equidistant in the scene, and then

computed the average absolute percentage deviation of the

distances in the rectified imagery from their mean: a more

accurate homography estimate should lead to lower average

deviation.

Since equidistant horizontal point pairs are not easily

identifiable in our pedestrian and marathon datasets, we

restricted our attention to the highway dataset. We identified

8 point pairs, each pair projecting from fixed points at

the same height on the same vehicle, over 10 consecutive

frames. We then projected these points to the rectified image

using our estimated homography matrix and measured the

mean absolute deviation of their separation over the 10

frames, as in Dubska et al [12].

Fig. 8 shows mean absolute deviation of distance between

point pairs in rectified imagery for our algorithm on the

highway dataset, compared with the errors reported by

Dubska et al [12] and Zhang et al [11] on their respective

datasets. We find that by this measure our method has a mean

error of 2.6%, lying between the performance reported by

Dubska et al [12] (1.18%) and that reported by Zhang et al

[11] (6%) on their respective datasets. However, it appears

that our method may be more reliable, as it has a maximum

error rate of only 3.2%, compared to 5.5% for the method

of Dubska et al [12] and 18% for the method of Zhang

et al [11]. We emphasize that our method also does not

require explicit tracking or vanishing point estimation, as

required by these prior methods, and thus has potentially

lower computational requirements and greater generality.

However, we must emphasize that no definitive statements

can be made until these methods are compared on a common

dataset.

E. Discussion

The proposed trackless motion-based method for cam-

era tilt estimation was found to work reliably over four

very different camera/lens systems, scenes, active agents

and patterns of motion, with average absolute tilt errors

ranging from 0.46 to 1.48 deg. For the highway dataset the

static method of Corral-Soto & Elder [1] based on curve

parallelism was found to be slightly more accurate. This

dataset represents an ideal scenario for the method of Corral-

Soto & Elder, where the family of parallel lane markings are

clearly visible. Our motion-based method performs almost

as well (0.55 deg vs 1.06 deg error) and much better than

the other two state-of-the-art static methods (4.73 deg and

55.28 deg error) we assessed [5], [17] .

For the other three datasets (outdoor pedestrian, marathon

and indoor) where parallel families of lines and curves are

either not as clearly visible or occluded by moving agents,

our proposed method outperformed all three methods based

on static structural features [1], [5], [17] by a large margin,

highlighting the relative generality of our approach.

Unfortunately direct comparison of the proposed trackless

motion-based method against prior motion-based methods

from Dubska et al [12] and Zhang et al [11] was not possible

due to lack of a common dataset and/or shared code. How-

ever, informal comparison on different but similar datasets

(Fig. 8) suggests that for traffic data, our approach may be

comparable to the method of Dubska et al (higher mean

error, lower max error) and much better than the method

of Zhang et al. We also note that these two competing

motion-based approaches depend upon explicit appearance

modeling, feature tracking and vanishing point estimation,

and have been tailored specifically to traffic applications.

Our approach, on the other hand, works for general dynamic

scenes on a ground plane and does not require explicit

tracking or vanish point estimation.

Just as static methods do poorly when regular static fea-

tures are sparse, motion-based methods such as the trackless

method proposed here will do less well when motion is

sparse. Characterizing exactly how performance varies with

sparsity of motion remains a topic for future work, however

note that our automatic method for denoising the optic

flow field selects as little as 2% of optic flow vectors with

good results, suggesting that dense motion is not necessarily

required. Furthermore, in a motion-based method, the quality

of the estimate can be improved continuously over time as

additional independent motion vectors are observed, some-

thing that is not possible for static methods. However, since

there will always be some scenes where static methods work

best and others where motion-based methods work best, the

ultimate system would likely employ both approaches and

arbitrate between them over time.
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VI. CONCLUSION AND FUTURE WORK

In this paper we have presented a novel and very general

method for recovering camera tilt from image motion in an

unsupervised manner. Unlike prior methods, the proposed al-

gorithm does not depend upon the visibility of regular static

structures in the scene and does not require segmentation,

shape analysis or feature tracking, thus reducing the required

computation. Our method does not require that objects move

in the same direction or at constant velocities. Rather, it rests

on the much more general assumption of zero correlation of

ground plane speed with ground plane position, averaged

over time. A novel method for automatically and adaptively

selecting the optimal subset of motion vectors generated by

the objects moving in the scene means that the algorithm

does not require training. This allows the algorithm to be

applied to diverse scenarios without reconfiguration. We

have demonstrated this generality on four diverse datasets

recorded with different camera/lens systems and have found

the method to consistently perform well relative to compet-

ing state-of-the-art methods based on motion features and

on regularities of static structures.

In future work, we intend to characterize the accuracy of

the method as a function of motion density and to extend the

method to recover roll angle by searching for the direction

in the image that maximizes the correlation with image

speed. Another goal is to develop compatible methods for

estimating focal length, important for camera installations

employing zoom lenses.
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